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Abstract

Two-Way Fixed Effect (TWFE) regressions are commonly used to analyze panel data for
the purpose of estimating an average treatment effect. While TWFE regressions are well un-
derstood for simple treatment patterns such as staggered adoption, there is still a gap in our
understanding when it comes to arbitrary treatment patterns. Many of the guarantees assume
homogeneous treatment effects, which is unrealistic in practice. In this work, we show that for
any arbitrary treatment pattern, when the outcomes under both treatment and control satisfy an
additive fixed effects model, then an unbiased estimate for the outcome of a unit-time pair (i, t)
under treatment or control can be constructed by weighting observations according to any (i, t)-
unit flow in the graphs associated to the treatment and control observations respectively. This
introduces a family of estimators parameterized by flows over networks, where flows restricted
to length-3 paths correspond to the difference-in-differences (DiD) estimator. We show that the
variance minimizing flow is the electrical flow, and it is equivalent to a variation of the TWFE
regression estimator for heterogeneous treatment effects. The connectivity of the networks as-
sociated to the treatment pattern and control pattern govern the statistical properties of the
electrical flow estimator (EFE) through the effective resistance, which gives a fine-grained and
intuitive understanding of the impact of the given treatment pattern on estimation. This esti-
mator is locally minimax optimal and is also the uniform minimum variance unbiased estimator
for each individual treatment effect.

1 Introduction

Standard estimators for panel data often assume simple block or staggered treatment patterns [I,

|, whether directly in the construction of the estimator or in the analysis of their performance.
However, for experiments arising from online platforms, the set of observed data and the treatment
patterns may be highly irregular and unstructured. Another common practice is to focus on
estimating average effects, which overlooks the underlying heterogeneity in the data. A recent line
of work [7, 3, 11, 5] allows heterogeneous treatment effects and assumes certain structures of the
effects. In this paper, we address the challenge of arbitrary treatment patterns and heterogeneous
treatment effects, uncovering a surprising yet intuitive connection between DiD estimators and
TWFE regression. There has been a flurry of work [13, 7, 10] drawing connections to better
understand TWFE regression. However, we are the first to interpret these estimators using network
flows, which carries physical meaning and paves the way for future exploration.

*For a complete version of this paper with proofs see [4].



2 Model Setup

Consider a population of [n] units and [T time periods. Let Q C [n] x [T] be the set of entries
that are observed. X;; denotes the treatment variable where 1 indicates treatment and O indicates
control. For pairs (i,t) € €, we observe the outcome Yj;, which is a function of the treatment
X We assume a heterogeneous additive two-way fized effects model, in which outcomes Yj; can be
described as

Yit = a; + v + BuXit + Eir and By = p; + 1y, (1)

where E;; represent errors that have mean zero and are independent of X;;. Note that the outcomes
under both treatment and control satisfy the parallel trends assumption, as they can be decomposed
into an additive unit fixed effect and time fixed effect. Our model allows the treatment effect to
be heterogeneous as long as it satisfies the additive fixed effect structure. The outcomes observed
under control can be viewed as noisy observations of the matrix F}; = o; +;, where the observation
pattern is given by Q° = QN {(i,t) : X;; = 0}. Similarly, the outcomes under treatment can be
viewed as noisy observations of the matrix G}, = o; + 11; + v + 14, where the observation pattern is
given by Q! = QN {(i,t) : X;z = 1}. Estimating the individual causal effect 8 = p; +1 = GI, — F;
is equivalent to the task of matrix estimation to recover F* and G*, when F* and G* are each given
by the sum of row fixed effects and column fixed effects.

To introduce the estimator and theoretical results, we consider the general matrix estimation
task for a matrix satisfying the additive model: We are given a noisy and partially observed matrix
M = Qo (M*+ E), where E € R™™ is additive noise, Q € {0,1}"*™ is the observation matrix,
and Ml*] =a; + b;f for latent fixed effects a* and b*. Our results will be conditioned on €2, thus
can be correlated with a¢* and b*.

3 Estimator

We introduce a family of unbiased estimators parameterized by flows on an undirected bipartite
graph G(Q) = (V,(2), where the vertex set V = {u;}ic[n) U {v;}jem) represent the n rows and m
columns, and the edge set is given by (2. When applied to the panel data setting, we construct
a treatment graph associated to the observation pattern under treatment as given by Q!, and a
control graph associated to the observation pattern 0. Figure 1 shows the construction of the
treatment and control graphs from a given treatment pattern.
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Figure 1: Example construction of treatment graph and control graph for a given treatment pattern.

Consider a concrete example as depicted in Figure 2(a), where we want to estimate entry (1,1) in
a 3-by-3 matrix, with the given (2. There is a simple path connecting u; and v; in the corresponding
bipartite graph. An unbiased estimate of M7, can be constructed by alternating between adding
and subtracting the observations on this path: ]\2/11 = Mo — Moo+ Mos— Mss+ M3, its expectation
being (a} + b3) — (a3 + b3) + (a5 + b%) — (af + b3) + (aj + b]) = a7 + b] = M;,. When there are



multiple paths in the graph, it is natural to aggregate the estimates obtained from each path to
make the most out of available information. We can achieve that by considering network flows, as
any unit flow on the graph from w; to v; can be decomposed as a convex combination of paths from
u; to vj. Consequently, we can construct an unbiased estimator for a unit flow by weighting the
individual path estimators accordingly.

Let f € R™ be a (u;,v;) unit flow on G(Q2). The unit flow estimator corresponding to f is given
by

M = 3 oy tm Fun e e Mie, (2)

which computes a weighted sum of the observations according to f. Within the class of unbiased flow
estimators, we can find the flow that minimizes the variance, for which there is a surprisingly simple
answer. If we view the observation graph as an electrical network as depicted in Figure 2(b), then
the variance of the flow estimator is proportional to the electrical energy of that flow. Therefore,
the electrical flow estimator (EFE), obtained by letting f be equal to the unit electrical flow, is
the optimal variance-minimizing flow estimator as it is the unique unit flow that minimizes the
electrical energy by Thomson’s principle. The variance of the resulting EFE is proportional to the
effective resistance!, which measures the connectivity between u; and v; [12, 9]. This connects to a
rich literature in physics and computer science that studies properties of network flows, electrical
flows, and effective resistance as a function of the network structure [6].
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Figure 2: (a) An example path estimator. (b) The (ui,v1) electrical flow sends a unit of current from
u1 to v1 on the electrical network constructed by treating each edge in the graph as a unit resistor, putting
higher weight on edges that appear on multiple paths. (c) Equivalence of DiD estimators to flow estimators
constrained to length 3 paths.

For the TWFE model (1), the individual treatment effect can be estimated by subtracting the
EFEs obtained from the treatment graph G(Q') and the control G(Q°): AgFE — GQEFE _ [EFE
Figure 2(c) illustrates an example where the estimator is the difference between the observed
treatment outcome and the estimated control outcome using a length-3 path. Interestingly, this is
equivalent to the DiD estimator. The general class of flow estimators offers more flexibility when
the treatment and observation pattern may be unstructured. When there does not exist connecting
paths of length 3 or shorter, the DiD estimator is unable to provide any estimate, while the flow
estimator shows that the heterogeneous treatment effect 5;; is identifiable as long as ¢ and t are
connected in both the treatment and control graphs.

IThe effective resistance between s and ¢ in an electrical network is equal to the potential difference that appears
across s and t when a unit current source is applied between them. The effective resistance is small when there are
many short paths between s and ¢, and it is large when there are few paths between s and ¢ that tend to be long.



4 Theoretical Results

For additive models, under the assumption that E;;’s are iid. N (0,0%), we provide an error
upper bound for the EFE in Theorem 1, which matches the local minimax lower bound presented
in Theorem 2. This implies the EFE is optimal for every instance, which is stronger than the
usual worst case minimax lower bound. The theorems are stated for a single matrix estimation
task under an additive model with a fixed observation pattern 2. Rq(7,j) denotes the effective
resistance between ¢ and j in the network represented by 2. We will subsequently apply these
theorems to the TWFE models by estimating separately on the treatment and control datasets
corresponding to the networks Q° and Q! respectively.

Theorem 1. With probability at least 1-9, we have (MZ]?FE—MZ’;)2 < 20%Rq(u;,v;) log(2nm/6),v(i, j).
Theorem 2. For a fized observation ), a connected pair (i,j), and additive models Q*, Q'
supQ/ infM maxM*e{Q*jQ/} E[(Mw — M:})2] Z %O’QRQ<’U,Z',U]‘). (3)

Additionally, we can show that EFE is equivalent to the least squares estimator (LSE), which
is given by MZI;SE =a; + Bj for (a,b) = argming, pyepno f(a,b) = HQ o(all +1,b" — M)H?7

Theorem 3. If u; and vj are connected in G(2) for (i,7) € [n] x [m], we have MinSE = MEFE

Theorem 3 implies that EFE minimizes variance among both all flow estimators and all unbiased
estimators. Applying Theorem 1 to the TWFE model yields

( AEFE — /3z‘t)2 < Co? [Rao (ug, vg) + Rap (ug, v¢)] log(NT/9),

with probability at least 1—J. The equivalence between EFE and LSE implies that the EFE matches
the modified TWFE regression, allowing for heterogeneous treatment effects (with additive fixed
effects),

(1, 0) = argmin, ,, . - Zi,t Q?t(ai + v = Y;t>2 + Zi,t Qzlt(ai + e+ v =Y )2- (4)

Adding the estimates yields B{;SE = [1; + ;. Since LSE is equivalent to EFE, we have AEFE = BAZI;SE
and (4) can be solved by using the electrical flows from the treatment graph and the control
graph. We can thus interpret TWFE regression estimates as a sophisticated method for combining
paths—potentially longer and overlapping ones—not just those of length-3 as in DiD. Because of this
flexibility, EFE (and LSE) can recover treatment effects for arbitrary treatment patterns, even when
DiD fails due to missing length-3 paths. This offers a clean interpretation of the minimum variance
by leveraging the notion of effective resistance in electrical networks. In an electrical network,
effective resistance between two vertices is lower if there are multiple short paths connecting them,
indicating greater connectivity. [3] has previously showed that graph connectivity as characterized
by the spectral gap and overlap of direct neighbors is key to estimation accuracy of TWFE regression
for fixed effect models. Our result further gives an explicit and exact equivalence of the variance
of the best estimator with the effective resistance, providing fine-grained entry-specific results.

5 Experiments

We conduct synthetic experiments with a sparsified staircase treatment pattern as depicted in
Figure 3(a). No length-3 path exists in the graph and as a result, DiD fails in this scenario. For
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Figure 3: (a) The treatment pattern has a staircase structure which gets progressively sparser to the bottom
right; the corresponding treatment graph has a zig-zag pattern. (b) Heatmap of the sum of effective resis-
tances in the graphs corresponding to treated and control observations. (c¢) Heatmap of the entrywise squared
estimation error.

the fixed treatment pattern, Figure 3(b) shows a heatmap of the sum of the effective resistances in
the graphs corresponding to the treatment and control observations. We generate row and column
fixed effects from a Gaussian distribution and set the variance of the observation noise as o> = 0.01.
For a given realization of the observations we compute the corresponding electrical flow estimates
BEF E for all pairs (i,t). We repeat the experiment 1000 times and compute the entrywise mean
squared error for each entry. Figure 3(c) shows the entrywise squared error of the EFE. The results
confirm that the estimation accuracy is proportional to the sum of the effective resistance from the
treatment and control graphs as stated in Theorem 1.
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